Maximal Cohen-macaulay Modules over Hypersurface Rings

نویسندگان

  • Viviana Ene
  • V. Ene
چکیده

This paper is a brief survey on various methods to classify maximal Cohen-Macaulay modules over hypersurface rings. The survey focuses on the contributions in this topic of Dorin Popescu together with his collaborators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Big Indecomposable Mixed Modules over Hypersurface Singularities

This research began as an effort to determine exactly which one-dimensional local rings have indecomposable finitely generated modules of arbitrarily large constant rank. The approach, which uses a new construction of indecomposable modules via the bimodule structure on certain Ext groups, turned out to be effective mainly for hypersurface singularities. The argument was eventually replaced by ...

متن کامل

Maximal Cohen-Macaulay Modules over the Affine Cone of the Simple Node

A concrete description of all graded maximal Cohen–Macaulay modules of rank one and two over the non-isolated singularities of type y3 1 +y 2 1y3−y 2y3 is given. For this purpose we construct an alghoritm that provides extensions of MCM modules over an arbitrary hypersurface.

متن کامل

A Krull-Schmidt Theorem for One-dimensional Rings of Finite Cohen-Macaulay Type

This paper determines when the Krull-Schmidt property holds for all finitely generated modules and for maximal Cohen-Macaulay modules over one-dimensional local rings with finite Cohen-Macaulay type. We classify all maximal CohenMacaulay modules over these rings, beginning with the complete rings where the Krull-Schmidt property is known to hold. We are then able to determine when the Krull-Sch...

متن کامل

Results on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module

Let  be a local Cohen-Macaulay ring with infinite residue field,  an Cohen - Macaulay module and  an ideal of  Consider  and , respectively, the Rees Algebra and associated graded ring of , and denote by  the analytic spread of  Burch’s inequality says that  and equality holds if  is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of  as  In this paper we ...

متن کامل

On the Cohen-macaulay Modules of Graded Subrings

We give several characterizations for the linearity property for a maximal Cohen-Macaulay module over a local or graded ring, as well as proofs of existence in some new cases. In particular, we prove that the existence of such modules is preserved when taking Segre products, as well as when passing to Veronese subrings in low dimensions. The former result even yields new results on the existenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007